Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
752347 | Systems & Control Letters | 2011 | 7 Pages |
An iterative identification algorithm of Hammerstein systems needs a proper initial condition to guarantee its convergence. In this paper, we propose a new algorithm by fixing the norm of the parameter estimates. The normalized algorithm ensures the convergence property under arbitrary nonzero initial conditions. The proofs of the property also give a geometrical explanation on why the normalization guarantees the convergence. An additional contribution is that the static function in the Hammerstein system is extended to square-integrable functions.
► We propose a new algorithm by fixing the norm of the parameter estimates. ► The normalized algorithm ensures the convergence property under arbitrary nonzero initial conditions. ► We give a geometrical explanation on why the normalization guarantees the convergence. ► The static function in the Hammerstein system is extended to square-integrable functions.