Article ID Journal Published Year Pages File Type
752579 Systems & Control Letters 2006 11 Pages PDF
Abstract

A sufficient condition for failure-tolerant performance stabilization in a desirable performance region under decentralized linear output-feedback is established. To exploit the flexibility in decentralized control beyond multivariable pole assignment, and to address the subsystem design objectives along with those of the overall system, a generic problem on decentralized linear output-feedback is then defined. The problem is reformulated in terms of a constrained nonlinear optimization problem. The proposed methodology results in the optimal reconciliation of failure-tolerant robust performance of the overall system, and (maximal) robustness, disturbance rejection, noninteractive performance, reliability and low actuator gains in the isolated subsystems in the face of unstructured perturbations in the controller and plant parameters. The effectiveness of the proposed approach is demonstrated by a numerical example.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,