Article ID Journal Published Year Pages File Type
753124 Systems & Control Letters 2007 9 Pages PDF
Abstract

We consider a general high-gain scaling technique for global control of strict-feedback-like systems. Unlike previous results, the scaling utilizes arbitrary powers (instead of requiring successive powers) of the high-gain parameter with the powers chosen to satisfy certain inequalities depending on system nonlinearities. The scaling induces a weak-cascading upper diagonal dominance (w-CUDD) structure on the dynamics. The analysis is based on our recent results on the w-CUDD property and uniform solvability of coupled state-dependent Lyapunov inequalities. The application of the general scaling technique to the design of a high-gain observer enables relaxation of the assumption in our earlier papers on cascading dominance of upper diagonal terms. The high-gain observer is coupled with a backstepping-based controller to obtain robust global stabilization in the presence of uncertainties that are incrementally linearly bounded in unmeasured states.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,