Article ID Journal Published Year Pages File Type
753591 Solid-State Electronics 2006 7 Pages PDF
Abstract

Microscopic voids in the die attachment solder layers of high power laser diodes (HPLDs) cause to degrade their overall thermal transfer performance. This paper presents the effects of voids on the thermal conductivity, leakage and threshold currents, characteristic temperature (T0) and output power of a single quantum well (SQW) HPLD. These effects are modeled by means of finite difference method (FDM). This numerical model calculates the time-dependent axial variations of photon density, carrier density and temperature in semiconductor laser self-consistently. The temperature dependence of the wavelength shift and the thermal mode hopping phenomenon is also demonstrated.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , ,