Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
753823 | Applied Acoustics | 2006 | 13 Pages |
An analytical method is developed to study radiated sound power characteristics from an infinite submerged periodically stiffened cylindrical shell excited by a radial cosine harmonic line force. The harmonic motion of the shell and the pressure field in the fluid are described by Flügge shell equations and Helmholtz equation, respectively. By using periodic theory of space harmonic analysis, the response of the periodic structure to harmonic excitations has been obtained by expanding it in terms of a series of space harmonics. Radiated sound power on the shell wall along the axial direction and the influence of different parameters on the results are studied, respectively. A conclusion is drawn that the stiffeners have a great influence at low and high frequencies while have a slight influence at intermediate frequencies for low circumferential mode orders. The work will give some guidelines for noise reduction of this kind of shell.