Article ID Journal Published Year Pages File Type
7538268 Social Networks 2018 17 Pages PDF
Abstract
Contagion effects, also known as peer effects or social influence process, have become more and more central to social science, especially with the availability of longitudinal social network data. However, contagion effects are usually difficult to identify, as they are often entangled with other factors, such as homophily in the selection process, the individual's preference for the same social settings, etc. Methods currently available either do not solve these problems or require strong assumptions. Following Shalizi and Thomas (2011), I frame this difficulty as an omitted variable bias problem, and I propose several alternative estimation methods that have potentials to correctly identify contagion effects when there is an unobserved trait that co-determines the influence and the selection. The Monte-Carlo simulation results suggest that a latent-space adjusted estimator is especially promising. It outperforms other estimators that are traditionally used to deal with the unobserved variables, including a structural equation based estimator and an instrumental variable estimator.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
,