Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7538290 | Social Networks | 2018 | 11 Pages |
Abstract
Digital data enable researchers to obtain fine-grained temporal information about social interactions. However, positional measures used in social network analysis (e.g., degree centrality, reachability, betweenness) are not well suited to these time-stamped interaction data because they ignore sequence and time of interactions. While new temporal measures have been developed, they consider time and sequence separately. Building on formal algebra, we propose three temporal equivalents to positional network measures that incorporate time and sequence. We demonstrate how these temporal equivalents can be applied to an empirical context and compare the results with their static counterparts. We show that, compared to their temporal counterparts, static measures applied to interaction networks obscure meaningful differences in the way in which individuals accumulate alters over time, conceal potential disconnections in the network by overestimating reachability, and bias the distribution of betweenness centrality, which can affect the identification of key individuals in the network.
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Lucia Falzon, Eric Quintane, John Dunn, Garry Robins,