Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7538522 | Social Networks | 2015 | 12 Pages |
Abstract
We introduce a new statistic, 'spectral goodness of fit' (SGOF) to measure how well a network model explains the structure of the pattern of ties in an observed network. SGOF provides a measure of fit analogous to the standard R2 in linear regression. Additionally, as it takes advantage of the properties of the spectrum of the graph Laplacian, it is suitable for comparing network models of diverse functional forms, including both fitted statistical models and algorithmic generative models of networks. After introducing, defining, and providing guidance for interpreting SGOF, we illustrate the properties of the statistic with a number of examples and comparisons to existing techniques. We show that such a spectral approach to assessing model fit fills gaps left by earlier methods and can be widely applied.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Statistics and Probability
Authors
Jesse Shore, Benjamin Lubin,