Article ID Journal Published Year Pages File Type
7539688 Journal of Energy Storage 2018 10 Pages PDF
Abstract
Battery powered energy systems such as electric vehicles utilize power electronics for controlling energy flows between the battery and the load or generation, respectively. Therefore, the battery is under high frequency stress due to fast switching power electronic devices. However, most battery models throughout the literature are not able to cope with high frequency excitation. This paper proposes an easy to implement equivalent circuit model that covers aforementioned frequency regions with a series of inductors that are each connected in parallel with an ohmic resistance. This circuit is parameterized by electrochemical impedance spectroscopy (EIS) up to 100 kHz. For further regions that reach regions of megahertz a skin effect model is investigated and compared to the RL-model. It is shown that such semi-empirical models can be motivated by geometrical considerations that can be found in the literature. Moreover, the proposed model is validated by simulating the voltage response from an input current that originates from an actual back-to-back half bridge DC/DC converter. The promising results indicate that such models might be implemented in future battery energy systems to improve insights on how batteries react to perturbations such as EMI noise or high frequency current ripple.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,