Article ID Journal Published Year Pages File Type
7539912 Journal of Energy Storage 2018 11 Pages PDF
Abstract
Experimental and numerical results from the world's first advanced adiabatic compressed air energy storage (AA-CAES) pilot-scale plant are presented. The plant was built in an unused tunnel with a diameter of 4.9 m in which two concrete plugs delimited a mostly unlined cavern of 120 m length. The sensible thermal-energy storage (TES) with a capacity of 12 MWhth was placed inside the cavern. The pilot plant was operated with charging/discharging cycles of various durations, air temperatures of up to 550 °C, and maximum cavern gauge pressures of 7 bar. Higher pressures could not be reached because of leaks that were traced mainly to the concrete plugs. Simulations using a coupled model of the TES and cavern showed good agreement with measurements. Cycle energy efficiencies of the TES were determined to lie between 76% and 90%. The estimated round-trip efficiency of the pilot plant was based on the measured TES performance and estimated performances of the other components, yielding values of 63-74%, which compares favorably with the usually quoted values of 60-75% for prospective AA-CAES plants.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,