Article ID Journal Published Year Pages File Type
753992 Acta Mechanica Solida Sinica 2014 17 Pages PDF
Abstract

Experiments show that silts and silty soils exhibit contraction followed by dilation during shearing and the slope of failure line decreases at large strains, termed as phase transformation behaviour. This paper is to develop a new micromechanical stress-strain model that accounts for the phase transformation behaviour by explicitly employing the phase transformation line and its related friction angles. The overall strain includes plastic sliding and plastic compression among grains. The internal-friction angle at the phase transformation state and the void state variable are employed to describe the phase transformation behaviour. The model is examined by simulating undrained and drained triaxial compression tests performed on Pitea silts. The local stress-strain behaviour for contact planes is also investigated.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering