Article ID Journal Published Year Pages File Type
7543141 Mathematics and Computers in Simulation 2018 43 Pages PDF
Abstract
The adaptive design of the control system for a direct current motor is solved by proposing differential evolution based control adaptation (DEBAC). From the comparison of two differential evolution variants with two constraint-handling techniques, a competitive algorithm based on arithmetic crossover and a set of feasibility rules is obtained. In addition, a comparison of such competitive differential evolution variant against a traditional control technique considering stabilization and tracking is provided. Based on the empirical results, the proposed approach outperforms the traditional method by using three well-known performance indices for closed-loop control, confirming that DEBAC is a valid alternative to control the direct current motor under parametric uncertainties.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,