Article ID Journal Published Year Pages File Type
754538 Applied Acoustics 2011 13 Pages PDF
Abstract

An experimentally validated analytical model has been developed in order to investigate the effect on impact sound transmission at low frequencies of location of the impact, type of floor, edge conditions, floor and room dimensions, position of the receiver and room absorption. The model was developed in order to allow rapid repeated calculations necessary for a parametric survey, described in a companion paper. The analytical model uses natural mode analysis to predict the sound field generated in rectangular rooms by point sound sources and the point excitation of homogeneous rectangular plates with different edge conditions. A floor-room model of the sound field generated in a room by a vibrating floor also has been derived. Laboratory and in situ measurements confirm that the models can be used to estimate impact sound transmission at low frequencies. The approach applies to homogeneous simply supported base plates of uniform thickness with homogenous floating floors, which again were experimentally validated in the laboratory and in situ.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,