Article ID Journal Published Year Pages File Type
7546188 Journal of the Korean Statistical Society 2018 8 Pages PDF
Abstract
In this paper, we consider a judgment post stratified (JPS) sample of set size H from a location and scale family of distributions. In a JPS sample, ranks of measured units are random variables. By conditioning on these ranks, we derive the maximum likelihood (MLEs) and best linear unbiased estimators (BLUEs) of the location and scale parameters. Since ranks are random variables, by considering the conditional distributions of ranks given the measured observations we construct Rao-Blackwellized version of MLEs and BLUEs. We show that Rao-Blackwellized estimators always have smaller mean squared errors than MLEs and BLUEs in a JPS sample. In addition, the paper provides empirical evidence for the efficiency of the proposed estimators through a series of Monte Carlo simulations.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,