Article ID Journal Published Year Pages File Type
755187 Applied Acoustics 2008 13 Pages PDF
Abstract

Varied, counter-demanding objectives in designing the underwater noise control linings are addressed using a finite element model based methodology. Four different kinds of designs are proposed to attend to diverse and conflicting requirements concerning echo reduction (ER) and transmission loss (TL) performance of these linings. In this regard a slightly modified hybrid type finite element based on the Pian and Tong (PT) formulation has been used to make the computational efforts less demanding as compared to the original one. The adequacy of this formulation has been shown by comparing its results with the analytical, finite element analysis based, and experimental results. Different unit cell representations for different types of distributions of air cavities on the linings are discussed with respect to their limitations and applicability. Effect of static pressure is studied by using a simplified technique which can be used to simulate deep sea testing environment. Performance variation of different designs is investigated under different water depths to study their applicability in such situations.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,