Article ID Journal Published Year Pages File Type
755198 Applied Acoustics 2008 12 Pages PDF
Abstract

Numerical studies have been carried out to investigate the detailed geometrical effects of full three-dimensional aero-intakes on the radiation of the discrete-frequency rotor–stator interaction noise. The near-field acoustic radiation characteristics and the far-field directivity patterns from the scarf and scoop aero-intakes with three different scarf/scoop angles are quantitatively analyzed and compared. The near-field predictions were obtained by solving the linearized Euler equations with computational aeroacoustic techniques consisting of high-order finite difference scheme, non-reflecting boundary conditions, overset grids and parallel computational methods. For the prediction of far-field directivity pattern, the Kirchhoff integral method was applied. By comparing the directivities of discrete-frequency noise radiating from the scarf and the scoop aero-intakes with that from an axisymmetric aero-intake, it is shown that the 7 dB noise reduction at downward peak radiation angle can be achieved by using the scoop aero-intake with scoop angle of 15°, and the 5 dB noise reduction by the scarf aero-intake with the scarf angle of 15°. The scattering of the radiating acoustic wave by the background mean flow around the aero-intakes shifts the peak lobe radiation angle toward ground and increases the amplitude of the acoustic pressure compared with the cases without mean flow effect. Overall, the scoop aero-intake was found to be more effective than the scarf and the axisymmetric aero-intakes in view of the lower noise radiation toward ground.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,