Article ID Journal Published Year Pages File Type
755290 Chinese Journal of Aeronautics 2013 9 Pages PDF
Abstract

A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , ,