Article ID Journal Published Year Pages File Type
755349 Chinese Journal of Aeronautics 2012 7 Pages PDF
Abstract

Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve, as high-temperature environment may bring problems, such as blocking of spool and increasing of leakage, to the valve. In this paper, a high-temperature flow-rate control valve, pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines. After introducing the construction and working principle, the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve. By using different boundary conditions, different methods of simulations are carried out and compared. The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured. By comparing the simulation and experimental results, a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering