Article ID Journal Published Year Pages File Type
755640 Chinese Journal of Aeronautics 2006 6 Pages PDF
Abstract

Saucer-shaped aircraft adopts a novel aerodynamic configuration of blending fuselage with wing. In contrast to the ordinary aircraft configurations, this kind of configuration can totally eliminate the drag resulted from fuselage, bringing many advantages such as simple structure, compact scale, high load capability. But its small aspect ratio makes the induced drag higher. Through wind tunnel experiments, it is discovered that a type of sweepback fin-shaped winglet can efficiently reduce the induced drag of this kind of aircraft. When this winglet is mounted to a model in wind tunnel experiment, the maximal ratio of lift to drag of the model can be increased by 75% as compared with the model without winglet at the speed of 30 m/s, and reached 15 at the speed of 50 m/s. In order to investigate the performance of this aircraft with winglet at low speed, test flights were processed. The results of test flights not only verify the conclusions of experiments in wind tunnel but also indicate that the load capability of the aircraft with winglet is increased and its lateral stability is even better than that of the aircraft without winglet.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering