Article ID Journal Published Year Pages File Type
756068 Communications in Nonlinear Science and Numerical Simulation 2011 11 Pages PDF
Abstract

In this paper, the effects of variable viscosity and thermal conductivity on coupled heat and mass transfer by free convection about a permeable horizontal cylinder embedded in porous media using Ergun mode are studied. The fluid viscosity and thermal conductivity and are assumed to vary as a linear function of temperature while the mass diffusion is assumed to vary as linear function of concentration. The surface of the horizontal cylinder is maintained at a uniform wall temperature and a uniform wall concentration. The transformed governing equations are obtained and solved by using the implicit finite difference method. Numerical results for dimensionless temperature and concentration profiles as well as Nusselt and Sherwood numbers are presented for various values of parameters namely, Ergun number, transpiration parameter, Rayleigh and Lewis numbers and buoyancy ratio parameter.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,