Article ID Journal Published Year Pages File Type
7562389 Chemometrics and Intelligent Laboratory Systems 2018 21 Pages PDF
Abstract
Deep-learning-based regression model composed of stacked auto-encoders (SAE) and fully-connected neural network (FNN) was used for the detection and quantification of nitrogen (N) concentration in oilseed rape leaf. SAE was applied to extract deep spectral features from visible and near-infrared (380-1030 nm) hyperspectral image of oilseed rape leaf, and then these features were used as input data for FNN to predict N concentration. The SAE-FNN model achieved reasonable performance with R2P = 0.903, RMSEP =0 .307% and RPDP = 3.238 for N concentration. Results confirmed the possibility of rapid and nondestructive detecting N concentration in oilseed rape leaf by the combination of hyperspectral imaging technique and deep learning method.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,