Article ID Journal Published Year Pages File Type
7562597 Chemometrics and Intelligent Laboratory Systems 2016 13 Pages PDF
Abstract
Electronic noses are sensing devices that are able to classify chemical volatiles according to the readings of an array of non-selective gas sensors and some pattern recognition algorithm. Given their high versatility to host multiple sensors while still being compact and lightweight, e-noses have demonstrated to be a promising technology to real-world chemical recognition, which is our main concern in this work. Under these scenarios, classification is usually carried out on sub-sequences of the main e-nose data stream after a segmentation phase which objective is to exploit the temporal correlation of the e-nose's data. In this work we analyze to which extent considering segments of delayed samples by means of fixed-length sliding windows improves the classification accuracy. Extensive experimentation over a variety of experimental scenarios and gas sensor types, together with the analysis of the classification accuracy of three state-of-the-art classifiers, support our conclusions and findings. In particular, it has been found that fixed-length sliding windows attain better results than instantaneous sensor values for several classifier models, with a high statistical significance.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,