Article ID Journal Published Year Pages File Type
756570 Systems & Control Letters 2009 7 Pages PDF
Abstract

This paper considers constrained control of linear systems with additive and multiplicative stochastic uncertainty and linear input/state constraints. Both hard and soft constraints are considered, and bounds are imposed on the probability of soft constraint violation. Assuming the plant parameters to be finitely supported, a method of constraint handling is proposed in which a sequence of tubes, corresponding to a sequence of confidence levels on the predicted future plant state, is constructed online around nominal state trajectories. A set of linear constraints is derived by imposing bounds on the probability of constraint violation at each point on an infinite prediction horizon through constraints on one-step-ahead predictions. A guarantee of the recursive feasibility of the online optimization ensures that the closed loop system trajectories satisfy both the hard and probabilistic soft constraints. The approach is illustrated by a numerical example.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,