Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
756604 | Computers & Fluids | 2013 | 11 Pages |
Direct numerical simulations of the flow over a sphere have been performed. The computations have been carried out in the sub-critical regime at Re = 3700 and Re = 10,000 (based on the free-stream velocity and the sphere diameter). A parallel unstructured symmetry-preserving formulation has been used for simulating the flow. Computations have been carried out on unstructured grids obtained by the constant-step rotation about the axis of a two-dimensional grid. With this discretisation, the Poisson equation has been solved by means of a Fourier diagonalization method. Particular attention has been devoted to investigate the shear-layer instabilities and its influence in the vortical structures, as well as the wake configuration. The main features of the flow including power spectra of a set of selected monitoring probes at different positions have been described and discussed in detail. Detailed information about turbulent statistics have also been provided.