Article ID Journal Published Year Pages File Type
756875 Computers & Fluids 2010 11 Pages PDF
Abstract

Numerical simulations of shock propagation and attenuation in narrow tubes are carried out using a one-dimensional approach. The discretization of the convective terms is based on the fifth-order weighted essentially non-oscillatory interpolation. The influence of the dissipative processes such as momentum and heat losses is investigated. Viscosity as well as heat losses are found to play a key role in the attenuation of the shock speed as well as the shock intensity in the long-time evolution, demonstrating the transition from a hyperbolic behavior towards a diffusive regime. Specifically, when only strong heat exchanges are considered, numerical tests, corroborated by a simple asymptotic analysis, showed a transition from a hyperbolic adiabatic regime to an isothermal regime. Furthermore, the influence of the scaling parameter ReD/4Ls, through the variation of the tube diameter, D, the viscous length scale, Ls, and the Reynolds number on the shock propagation behavior is examined.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,