Article ID Journal Published Year Pages File Type
757170 Chinese Journal of Aeronautics 2015 7 Pages PDF
Abstract

This paper addresses the problem of direction-of-arrival (DOA) and polarization estimation with polarization sensitive arrays (PSA), which has been a hot topic in the area of array signal processing during the past two or three decades. The sparse Bayesian learning (SBL) technique is introduced to exploit the sparsity of the incident signals in space to solve this problem and a new method is proposed by reconstructing the signals from the array outputs first and then exploiting the reconstructed signals to realize parameter estimation. Only 1-D searching and numerical calculations are contained in the proposed method, which makes the proposed method computationally much efficient. Based on a linear array consisting of identically structured sensors, the proposed method can be used with slight modifications in PSA with different polarization structures. It also performs well in the presence of coherent signals or signals with different degrees of polarization. Simulation results are given to demonstrate the parameter estimation precision of the proposed method.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
,