Article ID Journal Published Year Pages File Type
757303 Chinese Journal of Aeronautics 2016 11 Pages PDF
Abstract

In the present article, the linear and the nonlinear deformation behaviour of functionally graded (FG) spherical shell panel are examined under thermomechanical load. The temperature-dependent effective material properties of FG shell panel are evaluated using Voigt’s micro-mechanical rule in conjunction with power-law distribution. The nonlinear mathematical model of the FG shell panel is developed based on higher-order shear deformation theory and Green-Lagrange type geometrical nonlinearity. The desired nonlinear governing equation of the FG shell panel is computed using the variational principle. The model is discretised through suitable nonlinear finite element steps and solved using direct iterative method. The convergence and the validation behaviour of the present numerical model are performed to show the efficacy of the model. The effect of different parameters on the nonlinear deformation behaviour of FG spherical shell panel is highlighted by solving numerous examples.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, ,