Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
757474 | Chinese Journal of Aeronautics | 2010 | 9 Pages |
This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genetic algorithm (GA) as a global optimizer with sequential quadratic programming (SQP) as a local optimizer. The interceptor is comprised of a three-stage solid propulsion system for an exoatmospheric boost phase intercept (BPI). The interceptor's duty is to deliver a kinetic kill vehicle (KKV) to the optimal position in space to accomplish the mission of intercept. The modules for propulsion, aerodynamics, mass properties and flight dynamics are integrated to produce a high fidelity model of the entire vehicle. The propulsion module comprises of solid rocket motor (SRM) grain design, nozzle geometry design and performance prediction analysis. Internal ballistics and performance prediction parameters are calculated by using lumped parameter method. The design objective is to minimize the gross lift off mass (GLOM) of the interceptor under the mission constraints and performance objectives. The proposed design and optimization methodology provide designers with an efficient and powerful approach in computation during designing interceptor systems.