Article ID Journal Published Year Pages File Type
757756 Chinese Journal of Aeronautics 2014 7 Pages PDF
Abstract

Due to limitations to extract invariant features for recognition when the aircraft presents various poses and lacks enough samples for training, a novel algorithm called Weighted Marginal Fisher Analysis with Spatially Smooth (WMFA-SS) for extracting invariant features in aircraft recognition is proposed. According to the Graph Embedding (GE) framework, Heat Kernel function is firstly introduced to characterize the interclass separability when choosing the weights of penalty graph. Furthermore, Laplacian penalty is applied to constraining the coefficients to be spatially smooth in this algorithm. Laplacian penalty is able to incorporate the prior information that neighboring pixels are correlated. Besides, using a Laplacian penalty can also avoid the singularity of Laplacian matrix of intrinsic graph. Once compact representations of the images are obtained, it can be considered as invariant features and then be performed in classification to recognize different patterns of aircraft. Real aircraft recognition experiments show the superiority of our proposed WMFA-SS in comparison to other GE algorithms and the current aircraft recognition algorithm; the accuracy rate of our proposed method is 90.00% for dataset BH-AIR1.0 and 99.25% for dataset BH-AIR2.0.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,