Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7584935 | Food Chemistry | 2018 | 9 Pages |
Abstract
In this study, bovine serum albumin (BSA)-caffeic acid (CA) conjugate was prepared with free radical-induced grafting method. The CA to BSA ratio of the conjugate was 115.7â¯mg/g. In vitro antioxidant activity assays suggested that BSA-CA conjugates had stronger antioxidant activity than BSA. Resveratrol-loaded zein encapsulated with BSA and BSA-CA conjugate core-shell nanoparticles were prepared with antisolvent method. Particle sizes were 206.3â¯nm, and 217.2â¯nm for BSA and BSA-CA, respectively. The encapsulation efficiencies (EEs) were 85.3% and 86.5% for zein-BSA and zein-BSA-CA nanoparticles, respectively. SEM results indicated that both nanoparticles were spherical with mean diameter approximately 200â¯nm and smooth surfaces. Both thermal and UV light stability of resveratrol was significantly improved after nanoencapsulation. BSA-CA conjugate showed remarkably greater protection than BSA against resveratrol degradation. Cellular antioxidant activity (CAA) study confirmed that resveratrol in both zein-BSA and zein-BSA-CA nanoparticles had significant higher antioxidant activities than resveratrol alone.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Yuting Fan, Yuexiang Liu, Luyu Gao, Yuzhu Zhang, Jiang Yi,