Article ID Journal Published Year Pages File Type
758912 Communications in Nonlinear Science and Numerical Simulation 2010 5 Pages PDF
Abstract

The power generated by wind turbines changes rapidly because of the continuous fluctuation of wind speed and air density. As a consequence, it can be important to predict the energy production, starting from some basic input parameters. The aim of this paper is to show that a two-hidden layer neural network can represent a useful tool to carefully predict the wind energy output. By using proper experimental data (collected from three wind farm in Southern Italy) in combination with a back propagation learning algorithm, a suitable neural architecture is found, characterized by the hyperbolic tangent transfer function in the first hidden layer and the logarithmic sigmoid transfer function in the second hidden layer. Simulation results are reported, showing that the estimated wind energy values (predicted by the proposed network) are in good agreement with the experimental measured values.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,