Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7589722 | Food Chemistry | 2016 | 10 Pages |
Abstract
A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Paola Palmero, Agnese Panozzo, Ines Colle, Claire Chigwedere, Marc Hendrickx, Ann Van Loey,