Article ID Journal Published Year Pages File Type
759247 Communications in Nonlinear Science and Numerical Simulation 2010 8 Pages PDF
Abstract

In this paper, an improved particle swarm optimization is presented to search for the optimal PID controller gains for a class of nonlinear systems. The proposed algorithm is to modify the velocity formula of the general PSO systems in order for improving the searching efficiency. In the improved PSO-based nonlinear PID control system design, three PID control gains, i.e., the proportional gain KpKp, integral gain KiKi, and derivative gain KdKd are required to form a parameter vector which is called a particle. It is the basic component of PSO systems and many such particles further constitute a population. To derive the optimal PID gains for nonlinear systems, two principle equations, the modified velocity updating and position updating equations, are employed to move the positions of all particles in the population. In the meanwhile, an objective function defined for PID controller optimization problems may be minimized. To validate the control performance of the proposed method, a typical nonlinear system control, the inverted pendulum tracking control, is illustrated. The results testify that the improved PSO algorithm can perform well in the nonlinear PID control system design.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,