Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
759415 | Communications in Nonlinear Science and Numerical Simulation | 2009 | 5 Pages |
A non-autonomous flow system is introduced with an attractor of Plykin type that may serve as a base for elaboration of real systems and devices demonstrating the structurally stable chaotic dynamics. The starting point is a map on a two-dimensional sphere, consisting of four stages of continuous geometrically evident transformations. The computations indicate that in a certain parameter range the map has a uniformly hyperbolic attractor. It may be represented on a plane by means of a stereographic projection. Accounting structural stability, a modification of the model is undertaken to obtain a set of two non-autonomous differential equations of the first order with smooth coefficients. As follows from computations, it has the Plykin type attractor in the Poincaré cross-section.