Article ID Journal Published Year Pages File Type
759588 Communications in Nonlinear Science and Numerical Simulation 2009 10 Pages PDF
Abstract

The FitzHugh-Nagumo (FHN) equations are model equations for nerve cell behavior. They support traveling wave solutions which depend on certain parameters. In this paper, a two parameter study of rotating wave solutions (i.e. periodic wavetrains) are considered. These solutions arise from bifurcations of stationary equilibria. The local bifurcation equations are analyzed to determine bifurcation directions as functions of the parameters. In addition, dependence on parameters is computed by numerical continuation and properties of the rotating wave solutions are summarized in parameter space. Finally, some of the biological implications are discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,