Article ID Journal Published Year Pages File Type
759603 Communications in Nonlinear Science and Numerical Simulation 2009 8 Pages PDF
Abstract

Chaos is undesirable in many engineering applications since it causes a serious degradation of the system performance and restricts the system’s operating range. Therefore, the problem of controlling chaos has attracted intense interest in recent years. This paper proposes an approach for optimizing the control of chaotic systems with input saturation using an input-state linearization scheme. In the proposed approach, the optimal system gains are identified using the Nelder–Mead simplex algorithm. This algorithm does not require the derivatives of the cost function (or the performance index) to be optimized, and is therefore particularly applicable to problems with undifferentiable elements or discontinuities. Two numerical simulations are performed to demonstrate the feasibility and effectiveness of the proposed method.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,