Article ID Journal Published Year Pages File Type
759746 Communications in Nonlinear Science and Numerical Simulation 2011 4 Pages PDF
Abstract

We comment on traveling wave solutions and rational solutions to the 3+1 dimensional Kadomtsev–Petviashvili (KP) equations: (ut + 6uux + uxxx)x ± 3uyy ± 3uzz = 0. We also show that both of the 3+1 dimensional KP equations do not possess the three-soliton solution. This suggests that none of the 3+1 dimensional KP equations should be integrable, and partially explains why they do not pass the Painlevé test. As by-products, the one-soliton and two-soliton solutions and four classes of specific three-soliton solutions are explicitly presented.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,