Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
760099 | Communications in Nonlinear Science and Numerical Simulation | 2007 | 23 Pages |
The dynamics of a circular cylindrical shell carrying a rigid disk on the top and clamped at the base is investigated. The Sanders–Koiter theory is considered to develop a nonlinear analytical model for moderately large shell vibration. A reduced order dynamical system is obtained using Lagrange equations: radial and in-plane displacement fields are expanded by using trial functions that respect the geometric boundary conditions.The theoretical model is compared with experiments and with a finite element model developed with commercial software: comparisons are carried out on linear dynamics.The dynamic stability of the system is studied, when a periodic vertical motion of the base is imposed. Both a perturbation approach and a direct numerical technique are used. The perturbation method allows to obtain instability boundaries by means of elementary formulae; the numerical approach allows to perform a complete analysis of the linear and nonlinear response.