Article ID Journal Published Year Pages File Type
760100 Communications in Nonlinear Science and Numerical Simulation 2007 24 Pages PDF
Abstract

Treated as continuous deformable systems with an infinite number of degrees of freedom, flexible infinite length cylindrical panels subject to harmonic load are studied. Using the finite difference method with respect to spatial coordinates, the continuous system is reduced to lumped one governed by ordinary differential equations. These equations are transformed to a normal form and then solved numerically using the fourth order Runge–Kutta method. In order to trace and explain vibrational behaviour, dependencies wmax(q0) and Lyapunov exponents are calculated for panels with parameter value kx = 48. The corresponding charts of the control parameters {q0, ωq} are also reported. Novel scenarios yielding chaotic dynamics exhibited by cylindrical panels are illustrated and discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,