Article ID Journal Published Year Pages File Type
760282 Communications in Nonlinear Science and Numerical Simulation 2007 12 Pages PDF
Abstract

We consider a conservative nonlinear multigrid method for the Cahn–Hilliard equation with a variable mobility of a model for phase separation in a binary mixture. The method uses the standard finite difference approximation in spatial discretization and the Crank–Nicholson semi-implicit scheme in temporal discretization. And the resulting discretized equations are solved by an efficient nonlinear multigrid method. The continuous problem has the conservation of mass and the decrease of the total energy. It is proved that these properties hold for the discrete problem. Also, we show the proposed scheme has a second-order convergence in space and time numerically. For numerical experiments, we investigate the effects of a variable mobility.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,