Article ID Journal Published Year Pages File Type
760598 Acta Mechanica Solida Sinica 2008 11 Pages PDF
Abstract

Split Hopkinson pressure bar (SHPB) technique is used to determine the dynamic strength of reactive powder concretes (RPCs) with different steel-fiber contents. Two types of pulse shapers with different thicknesses are considered to reduce the high-frequency-oscillation effect and achieve a nearly constant strain rate over a certain deformation range. It is known that the compressive strength of concrete-like materials is hydrostatic-stress-dependent, and the apparent dynamic strength enhancement comes from both the effects of the hydrostatic stress and strain rate. In order to differentiate them, numerical method is used to calculate the contribution of the hydrostatic stress, and then the genuine strain-rate effect on dynamic compressive strength of RPCs is determined. In addition, the effect of steel-fibers on dynamic strength and failure mode of RPCs is discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering