Article ID Journal Published Year Pages File Type
761034 Energy Conversion and Management 2013 10 Pages PDF
Abstract

The organic Rankine cycle (ORC) can be used to recover waste heat from an internal combustion engine. In such a system, the evaporator design is critical. Determining the amount of heat that can be transferred in a designed evaporator is extremely important for a successful ORC system. In this paper, the performance of a finned-tube evaporator used to recover exhaust waste heat from a diesel engine is presented. First, the exhaust heat of the chosen diesel engine is evaluated based on the measured data. Subsequently, a mathematical model of the evaporator is created based on the detailed geometry and the specific ORC working conditions. Then, the heat transfer of the evaporator is estimated as the diesel engine runs through all of its operating regions defined by the engine speed and the engine load. The results show that the exhaust temperature at the evaporator outlet increases with engine speed and engine load. Although the convective heat transfer coefficient of the organic working fluid is significantly larger than that of the exhaust gas, the overall heat transfer coefficient is slightly greater than that of the exhaust gas. Furthermore, the heat transfer rate is the greatest in the preheated zone and least in the superheated zone. Consequently, the heat transfer area for the preheated zone is nearly half of the total area. In addition, the area of the superheated zone is slightly greater than that of the two-phase zone. It is concluded that the heat transfer area for a finned tube evaporator should be selected carefully based on the engine’s most typical operating region.

► The characteristic of the exhaust waste heat for a light duty diesel engine is analyzed. ► A mathematical model is established for a finned-tube evaporator used in an ORC. ► The heat transfer performance of the finned-tube evaporator is evaluated throughout the engine’s operating region.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , ,