Article ID Journal Published Year Pages File Type
7610661 Journal of Chromatography A 2015 7 Pages PDF
Abstract
Organophosphate (OP) diesters in urine samples have potential use as biomarkers of organism exposure to environmentally relevant OP triester precursors and in particular OP triester flame retardants. This present study developed a quantitatively sensitive ultra high pressure liquid chromatography (UHPLC-MS) based method for urine and the determination of OP diesters (i.e. diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), bis(2-chloroisopropyl) phosphate (BDCIPP), di-n-butyl phosphate (DNBP), di(2-ethylhexyl) phosphate (DEHP), bis(1-chloro-2-propyl) phosphate (BCIPP), and bis(2-butoxyethyl) phosphate (BBOEP)). Fortified with the 7 OP diesters, 1 mL of human urine sample was cleaned up using weak anion exchange solid phase extraction and eluted with high ionic strength ammonium acetate buffer. Subsequently, 4 non-chlorinated OP diesters were directly determined using UHPLC-electrospray(−)-triple quadrupole-MS (UHPLC-ESI(−)-QqQ-MS), and UHPLC-ESI(+)-QqQ-MS was used for determination of 3 chlorinated OP diesters after methylation using diazomethane. Recovery efficiencies of OP diesters ranged from 88 to 160% at three spiking levels (0.4, 2 and 10 ng/mL urine). Matrix effects (MEs) and method limits of quantification (MLOQs) were 15-134% and 0.10-0.32 ng/mL urine, respectively. Concentrations of OP diesters in n = 12 urine samples (from 4 Canadian residents, 2014) varied as follows, nd-<0.28 (DNBP), nd-1.29 (DPHP), nd-<0.28 (DEHP), <0.16-12.33 (BCEP), nd-1.17 (BCDIPP) and nd-0.68 ng/mL (BCIPP).
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,