Article ID Journal Published Year Pages File Type
7612313 Journal of Chromatography A 2014 10 Pages PDF
Abstract
This study evaluated the feasibility of asymmetric flow field flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) for separation, characterization and quantification of silver nanoparticles (AgNPs) in complex nutraceutical and beverage samples. For improved determination, different analysis conditions were proposed depending on the NP size, i.e. below 20 nm and in the 20-60 nm range. After optimization of the different experimental parameters affecting the AF4 separation process and the analyte detection, the proposed methods showed a wide dynamic linear range (i.e., in the 10-1000 μg L−1) and limits of detection below 28 ng L−1. A previous probe ultrasonication for 90 s (corresponding to 45 pulses of 2 s) of the tested samples resulted in complete AgNPs disaggregation. As a result, a fast accurate determination was achieved (complete analysis was done in ca. 37 min). The practicality of the proposed methodology for the intended determination was demonstrated by successful determination of the AgNPs present in a variety of nutraceuticals and a beverage at concentration levels in the 0.7-29.5 × 103 μg L−1 range. A good agreement was observed among these concentration data and those determined by more conventional sample preparation techniques, such as ultracentrifugation and acid digestion. Also, the estimated NP sizes using AF4 compared satisfactorily with those determined by image techniques, i.e. transmission electron microscopy (TEM). All together demonstrated the utility of this novel analytical methodology for the analysis of AgNPs of different size in complex matrices.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , ,