Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7612550 | Journal of Chromatography A | 2014 | 6 Pages |
Abstract
The aqueous biphasic system (ABS) plays a key role in the separation of bioactive substances, and the establishment and application of a low-molecular-weight polyethylene glycol (PEG) ABS remains a challenge in high-speed countercurrent chromatography (HSCCC). In this work, an ABS of low-molecular-weight PEG, namely PEG400-Na2SO4-H2O (20%-16%-64%, w/w/w), was developed on the basis of the phase diagram, and the phase forming time and ratio, and applied to HSCCC for the separation of polysaccharides. The crude polysaccharide extracted from Pericarpium granati (PGP) was successfully separated and three purified polysaccharides were obtained: PGP-1, with an average molecular weight of 13,210Â Da and composed of xylose (12.4%), ribose (10.1%), and glucose (77.5%); PGP-2, which is a homogeneous polysaccharide with an average molecular weight of 2584Â Da and consists of mannose; and PGP-3, with an average molecular weight of 2459Â Da and composed of ribose (51.4%), mannose (26.7%), and glucose (21.9%). This success shows that an ABS based on low-molecular-weight PEG could be applied to HSCCC separation technology.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Xin-Yu Zhou, Jing Zhang, Rui-Ping Xu, Xue Ma, Zhi-Qi Zhang,