Article ID Journal Published Year Pages File Type
7613140 Journal of Chromatography A 2014 10 Pages PDF
Abstract
While numerous analytical methods for phytosterols have been reported, the similar polarity and large molecules of phytosterol esters have made the methods lengthy and complicated. For this reason, an analytical method that could completely separate phytosterol esters including the higher fatty acids such as palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid in addition to phytosterols without preliminary separation was developed. The separation was accomplished by non-aqueous reversed phase chromatography technique using only acetone and acetonitrile. An atmospheric pressure chemical ionization/mass spectrometry detector configured at selected ion monitoring mode was hyphenated with the separation system to detect phytosterols and phytosterol esters. Twenty-four types of these were consequently separated and then identified with their authentic components. The calibration curve was drawn in the range of about 5 to 25,000 ng/mL with a regression coefficient over 0.999. The limit of detection and limit of quantification, respectively, ranged from 0.9 to 3.0 ng/mL and from 3.0 to 11.0 ng/mL. Recovery rates ranged from 80 to 120%. The quantification results were subjected to statistical analysis and hierarchical clustering analysis, and were used to determine the differences in the amounts of phytosterols and phytosterol esters across tobacco leaves. The newly developed method succeeded in clarifying the whole composition of phytosterols and phytosterol esters in tobacco leaves and in explaining compositional differences across the variety of tobacco leaves.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
,