Article ID Journal Published Year Pages File Type
7614822 Journal of Chromatography B 2018 28 Pages PDF
Abstract
Tryptophan (TRP) and dopamine (DA) pathways are of great importance for their related pathology and physiology. In the present study, a new reliable and sensitive analytical method was developed and validated for 12 neuroactive metabolites in TRP and DA pathways in mouse serum and brain by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method exhibited good sensitivity as the lower limit of detections ranged from 0.10 to 0.50 ng/ml and the lower limit of quantifications ranged from 0.20 to 2.00 ng/ml by derivatization with dansyl chloride (DNS-Cl) following solid phase extraction (SPE) on C18 cartridges. Good linearity (R2 > 0.99), intra-day precision (<9.8% in serum and <8.8% in brain), inter-day precision (<8.9% in serum and <8.5% in brain) and accuracy (90.3%-110.3% in serum and 86.5%-114.0% in brain) were obtained. The method was successfully applied in measuring 12 neuroactive metabolites in TRP and DA pathways in serum and brain samples of male and female mice to explore the differences between genders. As a result, DA and the turnover of DA to 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxtryptamine (5-HT) to TRP and 5-hydroxyindole acetic acid (5-HIAA) to 5-HT in the serum and norepinephrine (NE) in the brain were significantly different between genders.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , ,