Article ID Journal Published Year Pages File Type
7615376 Journal of Chromatography B 2018 7 Pages PDF
Abstract
Cyclic phosphatidic acid (cPA), an analog of lysophosphatidic acid, is involved in the regulation of many cellular processes. A sensitive and specific method to quantify the molecular species of cPA is important for studying the physiological and pathophysiological roles of cPA. Here, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantification method for the simultaneous detection of cPA species having various fatty acids (16:0, 18:0, 18:1, and 18:2) as well as 2-carba-cPA, a chemically synthesized analog of cPA. Chromatography was performed using a reversed-phase C18 column. cPA species were detected using a triple quadrupole mass spectrometer. cPA 17:0 was used as an internal standard. Intra- and interday precision values (CV%) were within 10%. The linear range of detection for each cPA species was 0.01 μg/mL to 5 μg/mL, with correlation coefficients of 0.998 or higher. The developed method was applied to the quantification of cPA species in mouse plasma and organs. The concentrations of cPA 16:0, 18:0, and 18:1 were revealed to be significantly reduced in the brains of cuprizone-treated mice, a model of multiple sclerosis, compared with control mice. These findings could be important for understanding the roles of cPA in the neurodegenerative processes associated with multiple sclerosis.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , ,