Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7615602 | Journal of Chromatography B | 2018 | 29 Pages |
Abstract
Metabolomics combined with high-resolution mass spectrometry (HR-MS) and multivariate data analysis has broad applications in the study of xenobiotic metabolism. Although information about xenobiotic metabolism is essential to understand toxic mechanisms, pharmacokinetic parameters and excretion pathways, it is limited to predict all generated metabolites in biological fluids. Here, we revisited sildenafil metabolism in human liver microsomes using a metabolomics approach to achieve a global picture of sildenafil phase 1 metabolism. Finally, 12 phase 1 metabolites were identified in human liver microsomes; M1-M5 were previously known metabolites. The chemical structures of the novel metabolites were elucidated by MS2 fragmentation using an HR-MS system as follows: M6, reduced sildenafil; M7, N,N-deethylation and mono-oxidation; M8, demethanamine, N,N-deethylation and mono-hydroxylation; M9, demethanamine and N,N-deethylation; M10 and M11, mono-oxidation in the piperazine ring after N-demethylation; and M12, mono-oxidation. All metabolites, except M1, were formed by CYP3A4 and CYP3A5. In conclusion, we successfully updated the metabolic pathway of sildenafil in human liver, including 7 novel metabolites using metabolomics combined with HR-MS and multivariate data analysis.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Ju-Hyun Kim, Jun Hyun Jo, Kyung-ah Seo, Hayoung Hwang, Hye Suk Lee, Sangkyu Lee,