Article ID Journal Published Year Pages File Type
7615751 Journal of Chromatography B 2017 29 Pages PDF
Abstract
This work aims to provide a flexible solution to facilitate reliable compound annotation based on retention time in reversed-phase liquid chromatography (RPLC). It proposes an innovative approach based on the chromatographic linear solvent strength (LSS) theory, allowing retention times under any gradient conditions at fixed temperature, stationary phase and mobile phase type to be predicted. Starting from a subset of the Human Metabolite Database (HMDB), a new dynamic database involving LSS parameters was developed. A real case study involving steroidogenesis alterations due to forskolin exposure was conducted using the adrenal H295R OECD reference cell model for endocrine disruptor screening. The prediction of retention times was successfully achieved, facilitating steroid identification. An automated procedure which implements the compound annotation levels encouraged by the Metabolite Standard Initiative (MSI) and the Coordination of Standards in Metabolomics (COSMOS) was also developed to speed up the process and enhance the data reusability.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,